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Abstract

Unusually large prize pools in lotteries like Mega Millions and Powerball attract ad-
ditional bettors, which increases the likelihood that multiple winners will have to share
the pool. Thus, the expected value of a lottery ticket decreases as the probability of
collisions (two or more bettors with identical winning tickets) increase. We propose
a way to increase the expected value of lottery tickets by minimizing collisions, while
preserving the independent generation necessary in a distributed point-of-sales envi-
ronment. Our approach involves partitioning the ticket space among different vendors
and pairing them off to ensure no collisions among pairs. Our analysis demonstrates
that this approach increases the expected value each ticket, without increasing the size
of the prize pool. We also analyze when ticket sales have maximal expected value, and
show that they provide positive returns when the jackpot is between $775.2 million
and $1.67 billion dollars.

1 Introduction

With players attracted by the potential winnings from enormous lottery pools, mul-
tistate lotteries like Mega Millions and Powerball sell tens to hundreds of millions of
tickets each week across the United States. Larger lottery pools attract more sales,
but the real expected value of a particular lottery ticket is a function of combinatorics,
pool size, and consumer behavior.

Calculating the probability of winning a lottery is a standard exercise in combina-
torics 1L 2 Bl [4]. Each ticket for the Powerball lottery contains six numbers, with five
“white balls” in range from 1 to 69, plus one “powerball” in the range from 1 to 26.
The grand prize requires selecting all of these numbers correctly. Thus there are

69 (26
= 292,201, 3
(5) (1) = s

possible tickets, making for very low odds of winning the jackpot. Similar rules hold
for Mega Millions and other lottery games.
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The payoff for a winning ticket varies each week, depending on the size of the prize
pool. The pool for Powerball starts at $40 million, but increases each week until there
is a winner. On January 13, 2016 it reached a record high of $1.586 billion.

Players like to win, but they do not like to share. Even the largest lottery pool
will yield a disappointing payoff if too many players independently select the winning
ticket. And multiple winners become a genuine risk once the pools get big enough [5].
Indeed, fully six of the ten biggest Powerball/MegaMillions jackpots (as of March 28,
2019) had multiple winners. Two of these big jackpots had to be shared three ways.

In this paper, we propose and analyze a practical scheme to increase the likelihood of
single winners, or equivalently to minimize the probability of sharing. Paradoxically,
this manages to increase the expected value of a lottery ticket without costing the
central authorities any additional contributions to the payoff pool. Given that larger
potential winnings attract more players, we anticipate that implementation of our
scheme would generate increased interest in these games, and enlarge the ostensible
benefits the governments running them can provide.

Further, we demonstrate that the number of Powerball tickets bought increases
quadratically with pool size, which implies that tickets become increasing less valuable
after the pool passes a critical threshold. This analysis enables us to determine the
range of pool sizes where tickets have positive expected value. In particular, we es-
tablish that Powerball tickets bought (under the current sales model) with pool sizes
between $775.2 million and $1.6656 billion have positive expected value.

2 Selecting Lottery Tickets with Quick Picks

Purchasers of Powerball and Mega Millions tickets have the option to select the com-
bination for each ticket they buy, and roughly 30% of tickets are sold with such self-
selected combinations [6]. But self-selection leads to a greater likelihood of collisions,
where multiple players pick the same combination and hence must share the prize
pool should they win. People tend to choose numbers that are meaningful to them,
such as dates and arithmetic progressions. This lack of independence skews certain
combinations to be selected far more often than would be suggested by chance [7].
The remaining 70% of tickets for these lotteries are sold through Quick Picks, where
the point-of-sale terminal generates a combination at random. Details of the generation
algorithm are not available to us, but we presume that something like a standard
linear congruential generator (LCG) is used to produce pseudorandom numbers. These
generators iteratively produce a sequence of values using the recurrence relation

Xpt1=(a-X,+c¢c) modm

Instantiated with appropriate constants a, ¢, and m, one can permute through all the
values of m before repeating. See Knuth [8] for a thorough discussion on the theory of
random number generation.

Our presumption is that such methods do an effective job selecting tickets with
uniform probability on each sales terminal. But under the well known birthday paradoz,
collisions occur surprisingly early in any such independent sampling strategy. We

expect the first collision to happen after about \/% =~ 1.25+/ N tickets sold, where N

is the size of the ticket space. For Powerball, where N = 292,201,338, this works out
to an expected sales collision after only 21,367 tickets are sold.



The problem of collisions is further complicated because tickets are sold simulta-
neously at thousands of terminals across the nation. Synchronization of the random
number generators across these machines (with the same constants a, ¢, m, and initial
X) would be disastrous, because the same combinations would get sold repeatedly by
different stores.

Quick Pick works independently across different lottery terminals. Kelly Cripe,
spokeswoman for the Multi-State Lottery Association which runs Powerball, stated
that Quick Picks “has no memory of what it previously selected” as an explanation for
why multiple players can get identical combinations [9]. Presuming that the constants
and initializations of the random number generators have been chosen correctly, the
collection of tickets across stores should be generated independently, with the resultant
collision probabilities well defined as a function of the number of tickets sold.

All of this leads to the question of whether it is possible to construct an efficient
distributed lottery scheme such that the probability of having to share the prize is
minimized.

3 Distributed Strategies to Generate Tickets

We consider a setting where m stores independently generate tickets on demand. Each
distinct lottery ticket can be ranked, or equivallently put in a bijection with a distinct
integer ranging from 0 to N —1. It is a straightforward task to unrank each such integer
into a ticket, as well as the inverse operation of ranking each ticket to corresponding
integer using a a recursive combinatoric approach. We discuss such operation in the
appendix.

In our analysis, we consider a ticket as winning only if it claims part of the grand
prize, ignoring smaller prizes granted for similar but incomplete matches. We assume
the winning ticket will be drawn uniformly at random over the ticket space. To sim-
plify our analysis, we assume that that all tickets are bought through a Quick Pick
mechanism, meaning that customers cannot or do not selected their own combinations.

Our goal here is to devise an efficient, distributed mechanism to implement Quick
Pick so as to optimize the expected value of a ticket, given that n tickets have been
sold. We consider three different models:

e Independent Generation — This is the simplest ticket generation strategy, and the
one presumably implemented in current lottery point-of-sales terminals. Each
store generates a integer in the ticket space from 0 to N — 1 uniformly at random
on demand for each customer, which is unranked to generate an appropriate
combination. Equivalently, the process of selecting balls from an urn could be
simulated to generate tickets on demand.

Under such a system, each of the m stores generate tickets independently, without
memory of what they or any other store have generated in the past. The downside
is that no mechanism exists to prevent the same ticket being generated twice, in
different stores or even the same store.

e (entral Server Generation — At the other end of the spectrum, we consider a
central server that stores communicate with, that ensures no duplicate ticket
ever gets sold until the (N + 1)st request.



Such a server could be implemented constructing a random permutation of the
entire ticket space, and respond to the ith ticket request with the ith element in
this ordering. Alternately, we can represent the ticket space as a bit vector, and
search from a randomly selected position 0 < z < N — 1 to return the first open
index ¢ > x. After N tickets have been sold, every subsequent ticket sold after
will result in a collision, but this is clearly unavoidable due to the pigeonhole
principle.

Although this central server idea appears to be optimal in terms of preventing
collisions, it requires constant communication between each sales terminal and
the server. If at any point the connectivity is lost, tickets cannot be dispensed.
We seek a generation approach where ticket machines can work independently,
without any need of external communication while still minimizing collisions.

e Deterministic Pairing — Here we propose a strategy where each store is assigned
a “partner”, such that each store and its partner comprise a pair. Thus m stores
yield p = [m/2] pairs. We partition the ticket space N into p regions, and assign
a distinct region of size N/p to each pair. This represents the range of tickets
that a particular pair is allowed to sell from. (Recall that each possible ticket is
represented by a distinct integer from 0 to N — 1.)

One of the stores in each pair sells tickets in increasing order from the front of
the region, while the other store sells tickets in decreasing order from the back.
This guarantees that no collisions will occur for each pair until they exhaust the
entire region, making it optimal for two stores. After the store partners and
ticket ranges have been assigned, stores need not communicate further with any
external party.

4 Combinatorial Analysis

We now determine the expected value of a purchased ticket, given that k tickets have
been sold. Let P be the prize pool for a winning ticket, and IV be the size of the ticket
space. We first consider the expected value of a single ticket. If the contribution of
this ticket is unique among all tickets sold, then its expected value is P/N, because the
probability of it winning is 1/N and the prize if it wins is P. If the ticket is not unique
and shares its numbers with ¢ tickets in total, then its expected value is P/(gN) since
the prize would now be split among g people resulting in a prize of P/g.

To get the expected value of a purchased ticket, we sum over all the expected prizes
for each ticket and divide by the total number of tickets. To find the sum of these
expected prizes, we make the following observation. If we consider just a single set of
g tickets that share the same numbers, then the sum of the expected values for those
tickets will always be P/N, regardless of g. This is due to the fact that for a given ticket
number with g collisions, each ticket in the same set will have expected value P/(gN)
and since we have g of them, we get a total expected value sum of P/(gN)*g = P/N.
Thus, to compute the expected value sum over all tickets, we simply need to count the
number of distinct ticket numbers and multiply this value by P/N.

In summary, the expected value of each ticket is simply the number of distinct
tickets sold multiplied by P/(kN), where k the number of tickets sold so far.



4.1 Independent Random Generation

In the case of independent random generation, the number of distinct tickets can be
computed analogously to the number of distinct birthdays among a random sample of
k people.

This is a known problem, but to motivate the solution, we assume we know how to
compute the number of distinct birthdays for £ — 1 people, and consider what happens
when we add a new person k. The probability k does not share a birthday with any of
the original k£ — 1 people is (%)kil, and we can simply increase the expected value
by 1 in such a case. In the other scenario, the new person does not contribute to the
number of distinct birthdays, so the value does not increase.

This is summarized by the following recurrence, where N is the size of the ticket

space:
B(k) = (JVN_l)“ 1+ BE(k—1)]+ (1 - <NN_1>“> Bk — 1)]
)

N -1 k—1
:<N +E(k—1)
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To get the final expected value, we multiply by P/(kN) to get:

Eun(k) = [1 - <NN_1>k

4.2 Central Server

. P/k

In the case of the central server, each ticket contributes to a unique number. Thus,
the expected number of distinct tickets is equal to the number of tickets sold until N
tickets are sold. At that point, the maximum number of distinct tickets are sold. The
expected value of each ticket is given by:

P/N k<N
Ecs(k):{ _
2 k>N

4.3 Deterministic Pairing

The deterministic pairing scheme can be modeled by considering a balls and bins
problem with a limited capacity ¢ for each bin, where the balls represent a ticket, and
the bins represent the partitions of the ticket space. A ball is discarded whenever it
is thrown into a full bin. This captures the fact that the ticket values are recycled
after a partition of the ticket space is all used up. We calculate the total number of
balls remaining in the bins after k balls are thrown. This value of the number of balls



remaining represents the number of distinct tickets sold so far. In the worst case, all
the balls get thrown into a single bin and k& — ¢ balls are discarded, but this is highly
unlikely.

We solve this analytically for the case of two bins with ¢ = N/2. This is equivalent
to considering two pairs of stores with an even partition of the ticket space with size
N/2 each. The expected value of random variable X with outcome values z;, each with
probability p;:

k
E(X) =) pi;
i=1

In this setting, we wish to consider every possible sequence of ball tosses. We can
represent this as a binary string, in which 0 represents the left bin and 1 represents
the right bin. The ith bit of the string will represent the ith ball thrown. We consider
all binary strings of length %k, and compute the expected value by summing over the
values when there are i zeros and k — i ones directly for all 4.

The values, in this case, are the minimum between ¢ (or k — i) and N/2. This
reflects the discarding aspect as a bin cannot have more than N/2 balls. Thus, our
final expected value, given k tickets, is:

Expected Value of Purchased Tickets

ependen
—— Deterministic Pairing (m = 10,000)

Expected Value of Ticket

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of Tickets Sold

Figure 1: The expected fraction of the pool size claimed over all tickets sold under three dif-
ferent models, for N = 100, 000. The deterministic pairing model approaches the impractical
central server model, while strictly dominating independent generation.

We provide simulation results in Figure |1} for N = 100, 000.For the expected value
of purchased tickets, we see that the central server method is the best (although imprac-
tical to implement) maximizes expected value because it guarantees that each ticket in
the ticket space is sold at least once each before any combination repeats. The random



independent strategy does the worst of the three methods as collisions arise relatively
quickly. The deterministic pairing method does quite well as it nearly does as well as
the ideal server model, making it best among practical methods.

5 When to Buy to Maximize the Expected Value
of a Ticket

We now analyze at what point in the jackpot is the expected value of a ticket maximal.
To do so, we first estimate the number of tickets sold for a given jackpot size. We do
this by collecting data on lottery ticket sales across the United States for Powerball H
By graphing the number of tickets sold as a function of the jackpot, we note that the
curve is approximately quadratic. Thus, we run linear regression to find the best fit
quadratic formula. If T'(j) is defined to be a function of the jackpot that outputs the
number of tickets sold, we find that it is approximately:

T(j) = 278.362 — 5364.95; + 10582740.74

Here j is measured in terms of millions of dollars.
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Figure 2: The number of tickets sold as a function of the jackpot

Given this model, we can evaluate Ergr(j), the expected value of a ticket for a
given jackpot. Recall the expected value of a ticket can be computed for the random
independent generation scheme, where & = T'(j) is the number of tickets sold and N is
the size of the ticket space (the size of the ticket space N is 292,201,338 for Powerball),

_1\TO)
Erx(j) = [1 (55 | )

'https://lottoreport.com/ticketcomparison.htm
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Figure 3: The expected value of a Powerball ticket under the Quick Pick/independent gen-
eration (blue) and maximally collision avoiding (red) sales models, assuming the number of
tickets sold grows quadratically with the pool size.

Similarly, for the (ideal) central server approach, we evaluate Ecs(j), as

L% TGN
_ N

In the end, we get the following results presented in Figure The cost of each
lottery ticket is $2, so we are interested in situations when the expected value of a ticket
is greater than $2. We see that for the standard Quick Pick scheme, one can expect
to see returns when the jackpot is between $775 million and $1.67 billion. Here we
see that a ticket provides its maximal return when the jackpot is around $1.02 billion.
But as the jackpot grows larger and larger, the expected number of tickets to be sold
grows quadratically, and hence, the number of collisions overwhelm the returns of the
jackpot. It becomes more and more likely that it will need to be shared among more
people.

We note that under our proposed scheme, the range of the jackpot with positive
expected returns is larger, between $584 million and $1.79 billion. As the pool size
continues to increase, the expected value converges towards the standard Quick Pick
method, but the expected value of our scheme is always larger than that of the standard
Quick Pick method at all times, providing greater incentives for smart customers.

6 Conclusion

We propose an alternative to the standard ticket generation scheme used in popular
lotteries that generally minimizes collisions and raises the expected value of a ticket.
Our deterministic pairing method only requires an agreed setup between the lottery
associate and its distributors. No further communication is required during sales. For
future work, one may consider adding some degree of communication to establish how
much more this method can be improved upon. Analyzing the impact of non-uniform



ticket sales among stores (some more popular than others) is another factor to consider
as well.

The reader may wonder what the catch is with our ticket generation procedure.
How can we really increase expected value by affecting sales strategy, without any
change in the cost of the lottery pool? Over the course of a single lottery, it is clear
that we accomplish our goals. But there are certain subtleties in running a sequence of
lotteries, where the pools increase whenever there is no winner the previous week. By
reducing duplicates entries, we increase the likelihood that prize will be claimed each
week. Over a sequence of lotteries, our scheme will create fewer large pools resulting
from long runs of unsuccessful contests. But no one likes to share, and a lucky winner
would be more likely to keep all of it.
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7 Appendix

We describe a process of converting an integer n (rank) into a sequence of numbers
(a lottery ticket). The reverse, going from ticket to rank, can be done in a similar
manner, where the steps are nearly reversed. Recall that a lottery ticket consists of
5 integers from 1 to 69 (white balls), and a sixth integer ranging from 1 to 26 (the
“powerball”). In this case, n must be at least 0 and less than 292,201,338. We first
consider generating just the white balls in the range from 0 to 68 (we simply add 1 to
each ball in the end).
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Our approach is to generate each number sequentially, keeping track of a lower
bound to ensure a strictly increasing order. Let GenTicket(n,l,s) be a function
where n is the rank in question, 1 is a lower bound for the numbers we are allowed
to use, and outputs a sequence of s integers in strictly increasing order with values
at least 0 and less than h (globally provided). To generate the white balls, we would
call GenTicket(n,0,5), where n is the rank and h is globally provided as 69. We can
define GenTicket as follows, where Binom(n,k) counts the number of combinations to
choose k out of n objects:

global h : upper bound of ticket numbers
function GenTicket(n,1l,s):
if s ==
return [n + 1]
else:
i=1
while n >= Binom(h - 1 - i, s - 1):
n -= Binom(h - 1 - i, s - 1)
i+=1
return [1 + i - 1] + GenTicket(n, 1 + i, s - 1)

Intuitively, we use Binom to determine how many tickets there are starting with the
given lower bound, and continuously reduce the ticket space until we know the range
in which the first number should lie. Then, we can recursively compute the rest of the
ticket.

For the remaining powerball, we simply divide the integer n by the total number of
possible white balls (11,238,513 for Powerball) to get the powerball number. As long
as n is within the possible number of tickets, this will compute the appropriate “level”
in the ticket space.

Note that the first (n = 0) ticket would be (1,2,3,4,5,1) and the last (n =
292,201, 337) ticket would be (65, 66,67, 68,69,26). As an example, we show the com-
putation to find the 100,000,000th ticket. We solve with 0-based indexing, so at the
end, we increase each value by 1 to get the standard ticket values.

We first divide n = 100,000,000 by 11,238,513 to get the Powerball number, which
is 8. Now, we find the remainder of n when divided by 11,238,513 to get 10,091,896,
which represents the rank that we have to compute the values of the white balls for. We
go step by step through the process to show how intermediate values are determined.
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# Our starting point
(¢, 72, 7,7, 7,8

3 * *

n: 10091896, lower bound: O, size: 5

We want to check if O can be our first number

The number of tickets with O as the first number is Binom(68,4)
But since 10091896 > Binom(68,4), we know it cannot be O.

We reduce to get a new n = 10091896 - Binom(68,4) = 9277511.

H O H H R

We continue the process. We can rule out 1 as the first number
because 9277511 > Binom(67,4): n = 9277511 - Binom(67,4) = 8511031
...repeat 24 iterations in total...

Finally, we get that 75142 < Binom(44,4). Our ticket lies in this set.
Since we iterated 24 times from 0, our first number must be 24.

H OH HF H H H

We recursively repeat the process.

24, 72, 72, 7, 7, 8)

n: 75142, lower bound: 25, size: 4

# Since we have used 24, our new lower bound is 25.

Our new size is 4 since we only have 4 more to fill now.
62801 = 75142 - Binom(43,3)

...total 7 iteratioms...

5436 < Binom(36,3)

Thus, we add 7 more to the new lower bound.

H OH HF H R

(24, 32, 7, 7, 7, 8)

n: 5436, 1: 33, size: 3

# 4841 = 5436 - Binom(35,2)
# ...total 13 iteratioms...
# 67 < Binom(22,2)

(24, 32, 46, 7, 7, 8)
n: 67, 1: 47, size: 2
# 46 = 67 - Binom(21,1)
# 26 = 46 - Binom(20,1)
# 7 < Binom(19,1)

(24, 32, 46, 50, 7, 8)

n: 7, low: 51, size: 1

# Since size = 1, we can return low + n.
# Final result

(24, 32, 46, 50, 58, 8)

In the end, we increment each value by 1 to have every value start at 1, and we find
that the 100,000,000th ticket is (25, 33, 47, 51, 59, 9).

11



	1 Introduction
	2 Selecting Lottery Tickets with Quick Picks
	3 Distributed Strategies to Generate Tickets
	4 Combinatorial Analysis
	4.1 Independent Random Generation
	4.2 Central Server
	4.3 Deterministic Pairing

	5 When to Buy to Maximize the Expected Value of a Ticket
	6 Conclusion
	7 Appendix

